An Ultra Wideband Small Antenna for 800 Mhz To 10 Ghz

Jorge Sosa-Pedroza¹; Fabiola Martínez-Zúñiga²; Jair de Jesús Sebastian Villa³ Escuela Superior de IngenieríaMecánica y Eléctrica InstitutoPolitécnicoNacionalMÉXICO

Abstract: One of the main concerns in actual antenna design is enhance bandwidth to cover the wide communications standards. Since years ago researchers work in newtechniques looking for better performance in this antenna behavior [1-5]. As others, our group have worked in different techniques to enhance antenna bandwidth as circular or quasi-circular structures, softening sharp corners for both ground and main structures, we also apply slots and cuts, modifying current distribution for field pattern uniformity [6,7]. This paper presents application of those techniques over a small ultra-wide band antenna, working from 800 MHz to 10 GHz, covering most of the standards required for actual cellular phones but also for other applications, as satellite communications. Design is applied to a small patch antenna, looking -10 dB for S_{11} parameter; good field omnidirectional pattern response and an increasingly frequency linear gain. We use electromagnetic simulation to define the best patch and ground plane geometry, selecting a low cost substrate, with the best performance.

Westart with a planar circular monopole antenna, moving to an elliptical shapesoftening sharp edges, modifying the ground plane shapeand using vertical slots over the antenna. Each step enhanced the bandwidth, widening it as much as 1 to 10. We obtain good agreement comparing simulation results with measured parameters of aconstructed prototype.

Key Notes: Antenna, ultra-wide band antenna, multiple standard of antenna

Date of Submission:16-11-2019	Date of Acceptance:02-12-2019

I. Introduction

Wireless communication systems are in permanent evolution. Systems as PCS, operate in the band of 800 MHz to 6 GHz to include services of data voice and even video; butdemand of other services leadFCC to define an Ultra-Wide Band Antenna as that working from 1.99 to 10.6 GHz [8].

Considering mobility applications, size reduction is also an antenna requirement, our design covers services from 800 MHz to 10 GHz, in one single small size antenna, but taking in account that evolution of antennas is affected by relationship between size and wavelength.

Miniaturization of antennas is not a new topic; in fact, many efforts in the last decades, attempt to reduce antenna dimensions, looking for better fitting into electronic devices.Size reduction issues techniques have been extensively studied, as those proposed in literature:

- Higher permittivity substrate
- Shorting walls
- Antenna excitation
- Partial cuts
- Slots
- Fractal structures

Using reduction techniques in a planar antenna, we work over S_{11} , gain, and radiation pattern to comply with our goal of an Ultra-Wide Band antenna, covering different standards and FCC definition, as those in Table 1.

Table 1. Communication standards		
STANDARDS	CENTRAL FREQUENCY [GHZ]	
GSM900	0.920	
GSM1800	1.800	
PCS	1.900	
WCDMA	2.000	
Bluetooth	2.400	
WLANa	2.440	
WiMAX	2.600	
WLANg	5.250	
WLANb	5.750	
FCC	1.99-10.6	

II. Parametric antenna design

Our design starts with the simplest way of size reduction of a planar antenna: using a high substrate dielectric constant. Apermittivity of four reduces wavelengthby a factor of two [5], due reduction of propagation velocity as:

$$\lambda = \frac{v}{f} = \frac{c}{f\sqrt{\varepsilon_r}} = \frac{\lambda_0}{\sqrt{\varepsilon_r}}$$

However, increasing dielectric constant with a reduced thickness of substrate material, carries greater losses due surface wave, then there is a compromise between bandwidth and radiation efficiency. Lower permittivity produces greater line-widths field and therefore better radiation, thus increasing the efficiency as well as bandwidth. On the other hand, high permittivity generates an increase of antenna impedance and reducing patch radiator due the wavelength reduction. Even more, the increase of permittivity increases substrate cost. Design we present is a compromise between wideband, size reduction, and cost, using commercial FR4 substratewith ϵ_r =4.3 and 1.6 mm thickness.

After selecting substrate material, we applied some techniques to enhance bandwidthfor a -10 dB down of S_{11} parameter, with special attention in the lower and higher frequencies. Following we present the process.

We start with an elliptical shape; following for feed line design [6], softening straight lines and cornersin patch and ground plane and useof slots, for a better current distribution.

Selecting the shape. Most of UWB antennas are printed monopole patches. Even there are many structures, circular or elliptical are the best shapes for wide band applications. Equation 1 defines lower frequency of a wide band antenna, forcircular or elliptical patches[9]:

$$f_l = \frac{7.2}{(L+r+p)} GHz \tag{1}$$

Where:

L= *Height of monopole antenna*

r= *Equivalent radius for a circular antenna*

p= *Length of strip line*

Figure 1 shows elliptical geometry, with A and B as the major and minor semi-axis, respectively, where:

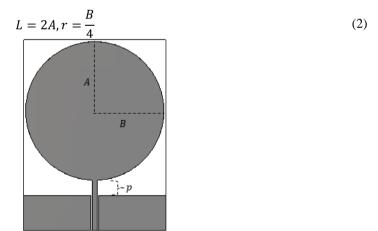
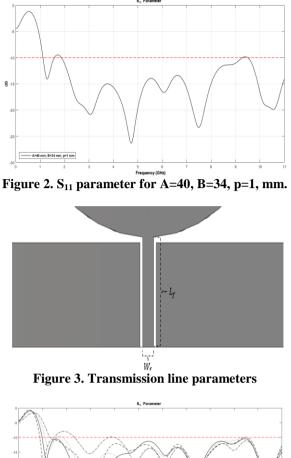
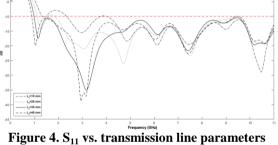




Figure 1. Parameters of an elliptical patch

After analyze different relationships between A and Bwith p=1 mm; the best response for the lower frequency is shown in Figure 2, with A=40 mm and B= 34 mm. As seen we have 1.117 GHz for S₁₁=-10 dB, although equations 1 and 2 give lower frequency as 0.9114 GHz, for those A and B values.

Transmission line design. We selected a CPW structure for the feed line using $W_f = 4$ mm with a gap of 1 mm, and $Z_0 = 50 \ \Omega$. Figure 3 shows the transmission line parameters and figure 4 the analysis for different line lengths. The best result is $L_f = 40$ mm with a lower frequency of 888.9 MHz.

Ground Plane shape.Next step was modification of ground planeusing an elliptical shape as shows Figure 5.[10]. Proceeding in the same way we found the best overall band relationship as $L_g=40$ mm and $R_g=50$ mm. Figure 6 shows results for different parameters.

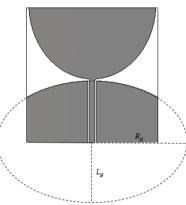
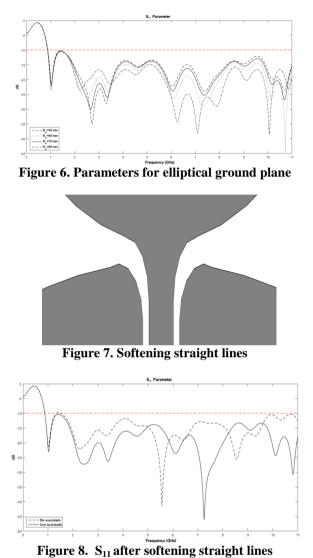



Figure 5. Elliptical ground plane

Softening straight lines. Other technique to enhance bandwidth is to make a soft transition between straight lines and curved shapes as shows Figure 7. Soft transitions make a better current distribution over the structure. Figure 8 depicts the difference introduced by softening straight lines.

Modifying ground plane structure. To have a better response, we introduce "legs" on ground plane as seen in

Figure 9. We analyse the effect in current distributions. Figure 10shows response, without modification, for three frequencies on the patch, (red is maximum and blue minimum) as seen current is almost concentrated in patch perimeter of ground plane. Modifying plane shape, current distribution changes for better as shows Figure 11. As seen, there are only small blue holes in antenna at higher frequencies. We selected $W_c=12.5$ mm and $R_c=32$ mm for the best results. Even S_{11} parameter had very small changes, main effect was over radiatedfield patterns, as seen in figures 12a and 12b, for with and without modification respectively.

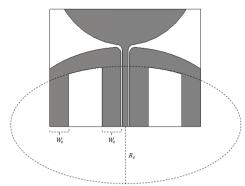
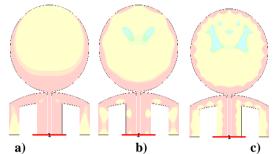
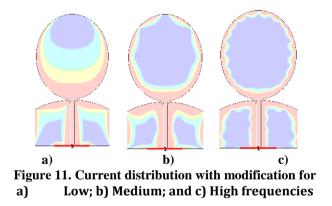
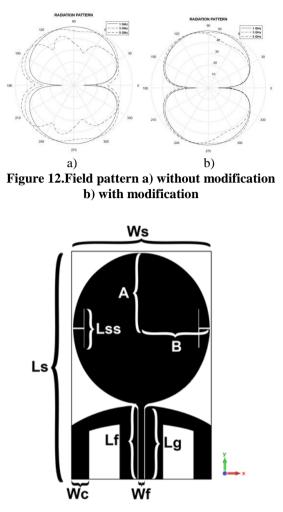


Figure 9. Ground plane modification


Figure 10. Current distribution without modification for a) Low; b) Medium; and c) High frequencies

For even better current distribution we introduced slots on the patch [10], getting good results on field patterns, show at the end. With Figure 13 as reference, Table 2 shows the final antenna dimensions.

III. Construction and comparison.

Figure 14 shows the constructed prototype using FR4 substrate with 1.6 mm thickness and 0.035 mm copper clad. For prototype measuring, we use an Anritsu MS4624B Vector Network Measurement System inside an anechoic chamber, as seen in Figure 15. Next figures presentmeasurements compared with simulation results.

Figure 13. Final dimensions

1 abie 2. r mai unnensions	Table	2.	Final	dimensions
----------------------------	-------	----	-------	------------

Parameter	Dimension (mm)
A	43
B	39
L _s	130
Ws	80
L_{f}	43
W_f	3
L_g	42
R _g	58
Wc	10
L _{ss}	22.5

Figure 16 shows the S_{11} parameter of measured and simulation results. As notice, from 700 MHz to 10 GHz, response is down of the -10 dB.As well, Figure 17 presentsVSWR. As seen, there are good similitudes for simulations and measurements.

Figure 14The constructed prototype

Figure 15.Measurement System inside an anechoic chamber

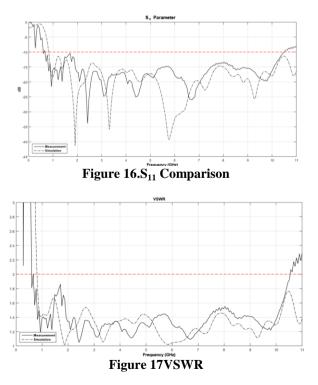
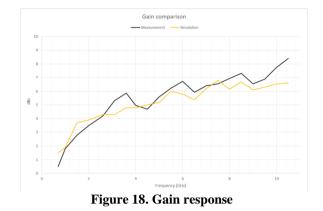



Figure 18 shows the gain response, as seen there is a maximum difference of 2 dB between simulation and measured results.

Finally, Figures 19 to 22 present field patterns comparison for different frequencies along the bandwidth; we notice the coincidence between measurement and simulation, but specially the similitude between field distributions at different frequencies forwide-band response, due the uniform current distribution.

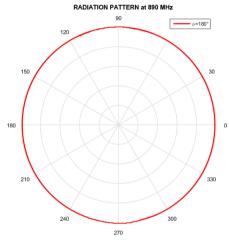
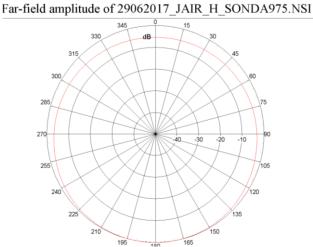
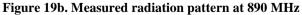




Figure 19a. Simulated radiation pattern at 890MHz

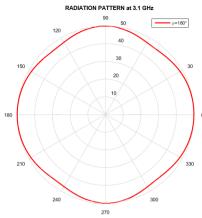


Figure 20a. Simulated radiation pattern at 3100MHz

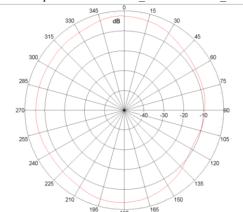


Figure 20b. Measured radiation pattern at 3100 MHz

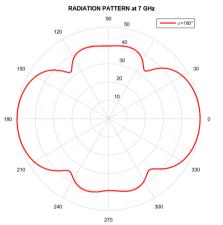


Figure 21a. Simulated radiation pattern at 7000MHz

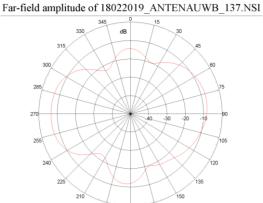


Figure 21b. Measured radiation pattern at 7000MHz

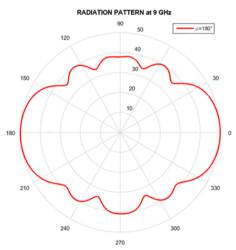


Figure 22a. Simulated radiation pattern at 9000MHz

Far-field amplitude of 19022019_ANTENAUWB_90.NSI

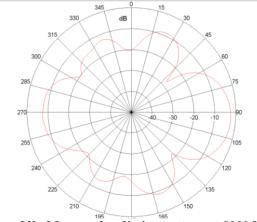


Figure 22b. Measured radiation pattern at 9000 MHz IV. Conclusions

We presented design and construction of an Ultra Wide Band Antenna. Process uses many techniques for widening bandwidth appearing in literature. Measurements and simulations are similar, showing the expected wideband response, for all designing parameters as coupling, gain and field patterns

Acknowledgments

The authors acknowledges the support of InstitutoPolitécnicoNacional (IPN) and ConsejoNacional de Ciencia y Tecnología (CONACYT) in the development of this research project.

References

- [1]. Hans G. Schantz, "A brief history of UWB antennas", IEEE Aerospace and Electronic Systems Magazine, vol. 19, 2004, Pp. 22-26.
- [2]. J. Becker, D. Filipovic, H. Schantz, and S. Y. Suh, "*Ultra-Wideband Antennas*", International Journal of Antennas and Propagation, Hindawi, Publishing Corporation, 2008.
- [3]. SebastianoBarbarino y FabrizioConsoli, "Effect of the substrate permittivity on the features of a UWB planar slot antenna", Microwave and optical technology letters, Vol. 52, No. 4, April 2010
- [4]. Hemant Kumar Varshney, Mukesh Kumar, A. K. Jaiswal, RohiniSaxena and KomalJaiswal "A Survey on Different Feeding Techniques of Rectangular Microstrip Patch Antenna" International Journal of Current Engineering and Technology, Vol. 4 No. 3 June 2014
- [5]. AnindyaGhosh, Malay Gangopadhyay, "Bandwidth Optimization of Microstrip Patch Antenna A Basic Overview" International Journal on Recent and Innovation Trends in Computing and Communications, Volume 8 Issue 2 February 2018
- [6]. Edson Garduño-Nolasco, Jorge Sosa-Pedroza, Hildeberto Jardon-Aguilar, "A Printed Volcano Smoke Antenna For Personal Communication Systems", Microwave And Optical Technology Letters, November 2016 Vol. 58, No. 11.
- [7]. BereniceBorja-Benítez, Edson Garduño-Nolasco Jorge Sosa-Pedroza and Luis M. Rodríguez-Méndez "Size reduction of volcano monopole antenna for Personal Communication Applications" 10th International Conference on Electrical Engineering, Computing Science, and Automatic Control, IEEE CFP13827-ART,September 2013
- [8]. Federal Communications Commission FCC 02-48 Release April 2002, Revision of Part 15 of the Commission's rules regarding Ultra Wideband Transmission Systems.
- [9]. A. A. Ashraf, A. R. Sharul Kamal, K. G. Tan, A. W. Reza, "Design of 3.1–12 GHz Printed Elliptical Disc Monopole Antenna with Half Circular Modified Ground Plane for UWB Application", Wireless PersCommun Springer Science, 2013, Pp. 535–549.
- [10]. Berenice B. Benítez, Luis M. R. Méndez, Jorge R. S. Pedroza y Edson G. Nolasco, "Simulación de cortes parciales como técnica de miniaturización a una antena plana tipo fumarola de volcán", IEEE XXIII ROC&C, November 2012, México.

Jorge Sosa-Pedroza. "An Ultra Wideband Small Antenna for 800 Mhz To 10 Ghz." IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) 14.6 (2019): 01-11.